
ISRAEL J O U R N A L  OF MATHEMATICS 95 (1996), 341-347 

POINTS OF INCREASE FOR RANDOM WALKS 

BY 

YUVAL PERES* 

Department of Statistics 
367 Evans Hall, University of California, Berkeley, CA 9,~ 720, USA 

e-mail: peres@stat.berkeley.edu 

A B S T R A C T  

Say that a sequence So,. . . ,  Sn has a (global) point of increase at k if 
S~ is maximal among So,. . . ,  Sk and minimal among Sk,. . . ,  S,~. We give 
an elementary proof that an n-step symmetric random walk on the line 
has a (global) point of increase with probability comparable to 1/log n. 
(No moment assumptions are needed.) This implies the classical fact, due 
to Dvoretzky, ErdSs and Kakutani (1961), that Brownian motion has no 
points of increase. 

1. I n t r o d u c t i o n  

A real:valued function f has a g l o b a l  p o i n t  o f  i n c r e a s e  in  t h e  i n t e r v a l  (a, b) 

if there is a point  to in the interval such that  f ( t )  < f ( to )  for all t E (a, to) 

and f ( to )  < f ( t )  for all t E (to, b). Dvoretzky, Erd6s and Kakutan i  [6] proved 

tha t  Brownian mot ion almost  surely has no global points of increase in any time 

interval. Knight  [10] and Berman [2] noted tha t  this follows from properties of  

the local t ime of Brownian motion;  elegant direct proofs were given by Adelman 

[1] and Burdzy [4]. The aim of  this note is to show tha t  the nonincrease phe- 

nomenon holds for arbi t rary  symmetr ic  r andom walks, and can thus be viewed 

as a combinatorial  consequence of fluctuations in r andom sums. 
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Definition: Say that a sequence of real numbers s0, s l , . . . , s n  has a (global) 

p o in t  o f  i nc rease  at k if si <_ sk for i = 0 , 1 , . . . , k -  1 and sk <_ sj for 

j = k + l , . . . , n .  

THEOREM 1.1: Let S0, SI . . . .  ,Sn be a random walk where the independent 

identically distributed increments Si - S~-1 have a symmetr ic  distribution, or 

have mean 0 and finite variance. Then 

C 
P [ S o , . . . ,  S~ has a point of  increase] <_ togn '  

for n > 1, where C does not depend on n. 

As we shall see in Section 3, this estimate is sharp except for the value of C. 

Proof of nonincrease of Brownian motion: To deduce this, it suffices to apply 

Theorem 1.1 to a simple random walk on the integers. Indeed it clearly suffices 

to show that  the Brownian motion {B(t)}t>o almost surely has no global points 

of increase in a fixed rational time interval (a, b). Sampling the Brownian motion 

when it visits a lattice yields a simple random walk; by refining the lattice, we 

may make this walk as long as we wish, which will complete the proof. More 

precisely, for any vertical spacing h > 0 define ro to be the first t _> a such that 

B(t)  is an integral multiple of h, and for i > 0 let ri+l be the minimal t _> r~ 

such that [B(t) - B ( T i ) I  = h. Then 

{ B( i) - B(,o) } 
-~ . i > O and ri < b 

is a finite portion of a simple random walk. If the Brownian motion has a (global) 

point of increase in (a, b) at the point to, then this random walk has a point of 

increase at the integer k where rk is closest to to. Thus by Theorem 1.1, 

C 
(1) P [ B . M .  has a global point of increase in (a,b)] _< ~ + P[T,~ > b]. 

l ogn  

Since the event [r,~ >_ b] can happen only if the B. M. increment satisfies 

[B(b) - B(a)[ _< (n + 1)h, the probability in (1) can be made arbitrarily small 

by first taking n large and then picking h > 0 very small. | 



Vol. 95, 1996 RANDOM WALKS 343 

2. P r o o f  o f  t h e  u p p e r  b o u n d  o n  t h e  p r o b a b i l i t y  o f  i n c r e a s e  

Notation: For the rest  of the paper ,  let X1, X 2 , . . .  be i.i.d, r a n d o m  variables,  
k X and let Sk = ~--~i=1 i be their  par t ia l  sums. Denote  

(2) P n = P [ S i _ > 0  for all l < i < n ] .  

Observe tha t  the event tha t  [Sn is largest among  So, $1 . . . .  Sn] is precisely the 

event tha t  the reversed r andom walk X,~ + - . .  + X n - k + l  is nonnegat ive  for all 

k = 1 , . . . ,  n; thus this event also has probabi l i ty  p,~. To see t ha t  this event is 

positively correlated with the event in (2), we need Harr is '  inequality. 

PROPOSITION 2.1 (Harris  [8]): Let X 1 , . . . , X n  be independent random vari- 

ables, and let f: R n ---, R and g: R '~ ~ R be nondecreasing functions (i.e., f and 

g are nondecreasing in each coordinate). Then 

E l f ( X 1 , . . . ,  X,~). g(Xl  . . . .  , Xr,)] > E [ f ( X l , . . . ,  Xn)]" E [ g ( X I ,  �9 �9 �9 X,-,)]. 

For a proof  of this inequali ty see, e.g., Kesten [9, pp. 72- 73]. 

LEMMA 2.2: 

(i) P [ 0 < _ S ~ < S n  for all l < i < n] > p~. 

(ii) If the increments  Xi have a symmetric distribution or have mean  0 and 

finite variance, then Cln -t /2 < pn <_ C2n -1/2 for a11 n >_ 1. 

Proo~ (i) Let f(Zl, . . . ,  Xn) := 1 if all the par t ia l  sums xl  + . . .  + xk for 

k -= 1 . . . . .  n are nonnegative,  and f ( x l , . . . , x , ~ )  := 0 otherwise.  Also, define 

g ( x l , . . . ,  xn) := f ( x n , . . . , X x ) .  Then  f and g are nondecreasing functions, and 

applying the Harris  inequali ty concludes the proof. 

(ii) For simple RW, the es t imate  follows easily from the reflection principle; for 

the general a rgument ,  see Feller [7, Section XII.8] . II 

We now s ta te  an extension of Theorem 1.1. 

THEOREM 2.3: For any random walk {Sj } on the line, 

Ek=oPkPn-k 
(3) P [ S 0 , . . . ,  Sn has a point of increase] < 2 ~[k~=/2j p2 k " 

Proof of Theorem 2.3: The  idea is simple: The  expected  number  of points  of 

increase is the numera to r  in (3), and given tha t  there is at  least one such point ,  
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the expected number is bounded below by the denominator; the ratio of these 

expectations gives the required probability. 

To carry this out, denote by I,~(k) the event that k is a point of increase 

for So, S1, Sn and by Fn(k) := I,~(k)\ Ilk-1 In(i) the event that k is the 
�9 " � 9  % / i = 0  

first such point. The events that [Sk is largest among So, $1, . . .  Ski and that 

[Sk is smallest among Sk, Sk+l,...Sn] are independent, and therefore 

P[In(k)] = PkPn-k. 

Observe that if Sj is minimal among S j , . . . ,  Sn, then any point of increase for 

So . . . .  , Sj is automatically a point of increase for So , . . . ,  Sn. Therefore for j < k 

we can write 

(4) 
F,~(j) N I,~(k) = Fj(j) N {Sj < Si <_ Sk for all i �9 [j, k]} 

fl {Sk is minimal among Sk , . . . ,  Sn}. 

The three events on the right-hand side are independent, as they involve disjoint 

sets of summands; the second of these events is of the type considered in Lemma 

2.2(i). Thus 

P[F~(j)  f-1 In(k)] > P[Fj(j)]p2k_jpn_k 

> p2_jP[Fj(j)IP [Sj is minimal among S j , . . . ,  S~], 

since p ,_a  > Pn-j .  Here the two events on the right are independent, and their 

intersection is precisely F,~(j). Consequently, P[F~(j) Cl I,,(k)] > p2_jp[Fn(j)]. 

Decomposing the event I,~(k) according to the first point of increase gives 

n n n k 

Epk pn_ k  = E P [ I n ( k ) ]  _> E E P[F,~(j) n I,~(k)] 
k = 0  k = 0  k = 0  j = 0  

Ln/2J j+Ln/2J tn/2J [n/2J 

-> pLjPE o(J/1 _> PEFou/I }2 
j = 0  k=j  j = 0  i = 0  

This yields an upper bound on the probability that {Sj }3=0 has a point of increase 

by time n/2; but this RW has a point of increase at time k if and only if the 

S " "reversed" RW {S,, - ,~-i}i=o has a point of increase at time n - k. Doubling 

this upper bound proves the theorem. | 
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Proof of Theorem 1.1: To bound the numerator  in (3), we can use s y m m e t r y  to 

deduce from Lemma 2.2(ii) tha t  

n Ln/2J 

PkP,~-k < 2 + 2 Z PkPn--k 
k = 0  k = l  

[_n/2J [_n/2J 

<_ 2 + 2c~ F ,  k- ' /~( '~ - k) - ' /~ <- 2 + 4 c y  '/~ ~ k -'/~, 
k : l  k = l  

which is bounded above because the last sum is 0(nl/2).  Since L e m m a  2.2(ii) 

implies tha t  the denominator  in (3) is at least C 2 logLn/2 j, this completes the 

proof. | 

Remark: For s y m m e t r i c  r andom walks, there is an alternative way to bound 

the numera tor  in (3) via comparison to strict maxima:  Denot ing a = P [ X I  > 0] 

and using the s y m m e t r y  of the step distribution, we see tha t  the probabil i ty tha t  

the walk has a s t r i c t  m a x i m um  at time k is at least 

Pk-1 " P [Xk > 0] - P [Xk+l  < 0] �9 P , - k - 1  >_ a2pkp,,-k. 

Hence the expected number  of points of increase satisfies 

Z p k p n _ k  <_ a - 2 E [ n u m b e r  of strict max ima  among S o , . . .  Sn] < a -2. 
k ~ 0  

Thus the probabil i ty tha t  So . . . . .  Sn has a point  of increase is at most  

2(~,c~)-~ / log[n/2J. 

3. A lower b o u n d  fo r  t h e  probabil i ty  of increase 

PROPOSITION 3.1 : For any  random walk" on the line 

(5) P[So . . . . .  Sn has a point of increase ] ~ ~ = o  PkP2n-k 

In particular if the increments have a symmetric distribution, o r  have mean 0 

and finite variance, then* P [ S 0 , . . . , S ~  has a point of increase] • 1 / l o g n  for 

n > l .  

* The symbol • means that the ratio of the two sides is bounded above and below 
by positive constants which do not depend on n. 
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Proof'. First we record an easy converse to Lemma 2.2(i): 

P [ 0 < S i < S k  for a l l l  < i < k ]  

< P [{0 < s .  for all i e (0, [k/2J]} n {s~ < sk for all i e Irk/21, k)}] = P~k/2l" 
Now the decomposition (4) in the proof of Theorem 2.3, combined with the last 

inequality show that  

~ P k P 2 ~ - k  = P[I2n (k)] 
k=0 k=O 

k n n 

= ~-~P[12n(k) NF2n(j)] <_ E P [ F , ~ ( j ) ] ~ p ~ / 2 I .  
k=0 j=0 j=0 i=0 

This implies (5). The assertion concerning symmetric or mean 0, finite variance 

walks follows from Lemma 2.2(ii) and the proof of Theorem 1.1. | 

In conclusion, we note that  some conditions for nonincrease of L~vy processes 

have been given by Bertoin [3] and Doney [5]; it would be interesting to compare 

these conditions with the estimates in Theorem 2.3 and Proposition 3.1. It is 

natural to ask whether the assumption of independent increments in Theorem 

1.1 can be relaxed; rather than at tempt a general statement in this direction, we 

mention a concrete example. 

CONJECTURE: Denote Sk(O) k . = ~ j = l  c~ and let A be Lebesgue measure 

on [0, 27r]. Then we conjecture that for n > 1, 

1 
A{e: So(O), S l (O) , . . . ,  S,(0)  has a point o~ incre~e} • logn" 
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